In vivo role of Escherichia coli single-strand exonucleases in SOS induction by gamma radiation.
نویسندگان
چکیده
Ionizing radiation causes different types of genetic damage, ranging from base modifications to single- and double-stranded DNA breaks, which may be deleterious or even lethal to the cell. There are different repair or tolerance mechanisms to counteract the damage. Among them is the Escherichia coli SOS system: a set of genes that becomes activated upon DNA damage to confer better opportunities for cell survival. However, since this response is triggered by single-stranded DNA regions, most lesions have to be processed or modified prior to SOS activation. Several genes such as recO, recB and recJ that seem to be required to induce the response have already been reported. The results of this work indicate that the four known E.coli single-strand exonucleases take part in processing gamma radiation damage, though RecJ and ExoI proved to be more important than ExoVII or ExoX. In addition, ExoV as well as glycosylases such as Nth and, to a lesser extent, Fpg are also required. A model intended to explain the role of all these genes in damage processing is presented.
منابع مشابه
Single-strand-specific exonucleases prevent frameshift mutagenesis by suppressing SOS induction and the action of DinB/DNA polymerase IV in growing cells.
Escherichia coli strains carrying null alleles of genes encoding single-strand-specific exonucleases ExoI and ExoVII display elevated frameshift mutation rates but not base substitution mutation rates. We characterized increased spontaneous frameshift mutation in ExoI- ExoVII- cells and report that some of this effect requires RecA, an inducible SOS DNA damage response, and the low-fidelity, SO...
متن کاملComparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction.
DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to io...
متن کاملRecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli.
Replication of the Escherichia coli chromosome usually initiates at a single origin (oriC) under control of DnaA. Two forks are established and move away in opposite directions. Replication is completed when these meet in a broadly defined terminus area half way around the circular chromosome. RecG appears to consolidate this arrangement by unwinding D-loops and R-loops that PriA might otherwis...
متن کاملMismatch repair in Escherichia coli cells lacking single-strand exonucleases ExoI, ExoVII, and RecJ.
In vitro, the methyl-directed mismatch repair system of Escherichia coli requires the single-strand exonuclease activity of either ExoI, ExoVII, or RecJ and possibly a fourth, unknown single-strand exonuclease. We have created the first precise null mutations in genes encoding ExoI and ExoVII and find that cells lacking these nucleases and RecJ perform mismatch repair in vivo normally such that...
متن کاملInteraction of Escherichia coli RecA protein with LexA repressor. II. Inhibition of DNA strand exchange by the uncleavable LexA S119A repressor argues that recombination and SOS induction are competitive processes.
The Escherichia coli RecA protein is involved in SOS induction, DNA repair, and homologous recombination. In vitro, RecA protein serves as a co-protease to cleave LexA repressor, the repressor of the SOS regulon; in addition, RecA protein promotes homologous pairing and DNA strand exchange, steps important to homologous recombination and DNA repair. To determine if these two functions of RecA p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutagenesis
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2008